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Abstract

The nonlinear (large-amplitude) response of perfect and imperfect, simply supported circular cylindrical shells to

harmonic excitation in the spectral neighbourhood of some of their lowest natural frequencies is investigated. The shell

is assumed to be completely filled with an incompressible and inviscid fluid at rest. Donnell’s nonlinear shallow-shell

theory is used, and the solution is obtained by the Galerkin method. The proper orthogonal decomposition (POD)

method is used to extract proper orthogonal modes that describe the system behaviour from time-series response data.

These time series have been obtained via the conventional Galerkin approach (using normal modes as a projection

basis) with an accurate model involving 16 degrees of freedom, validated in previous studies. The POD method, in

conjunction with the Galerkin approach, permits a lower-dimensional model as compared to those obtainable via the

conventional Galerkin approach. Different proper orthogonal modes computed from time series at different excitation

frequencies are used and solutions are compared. Some of these sets of modes are capable of describing the system

behaviour over the whole frequency range around the fundamental resonance with good accuracy and with only 3

degrees of freedom. They allow a drastic reduction in the computational effort, as compared to using the 16 degree-of-

freedom model necessary when the conventional Galerkin approach is used.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The choice of appropriate modal expansions of the expressions for shell displacements is fundamental to

guaranteeing accuracy of analytical-model results for nonlinear (large-amplitude) vibrations of circular cylindrical

shells.

A complete literature review of work on the nonlinear dynamics of shells in vacuo, filled with or surrounded by

quiescent or flowing fluids is given by Amabili and Pa.ıdoussis (2003). It is possible to attribute to Evensen (1967) and

Dowell and Ventres (1968) the original idea of modal expansions of the shell flexural displacement involving (i) the two

asymmetric modes with the same shape (sine and cosine functions around the shell circumference: one directly driven by

external excitation, the driven mode; the other, normally referred to as the companion mode) and (ii) an axisymmetric

term; their intuitive assumption on this was supported by the few available experimental results. The studies of

Ginsberg (1973) and Chen and Babcock (1975) constitute fundamental progress in the study of the influence of the

companion mode on the nonlinear forced response of circular cylindrical shells. In a recent series of papers, Amabili

et al. (1999a, b, 2000a, b) systematically studied the nonlinear dynamics and large-amplitude vibrations of simply

supported, circular cylindrical shells with and without quiescent or flowing fluid, by using as a basis the natural modes.
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In particular, the convergence of the solution with the type of terms included in the expansion was studied in references

(1999b, 2000a) and, with more terms, by Pellicano et al. (2002). In Pellicano et al. (2002) a parametric study was also

performed to investigate the transition from softening type to hardening type nonlinearity. Amabili (2003a) investigated

the effect of geometric imperfections and compared calculations and experiments by validating the theory.

More accurate shell theories have been used by Amabili (2003b) to study the same problem. Results show that, for

water-filled shells, Donnell’s shallow-shell theory gives reasonably accurate results. Other recent contributions are by

Gon@alves and Batista (1988), Lakis et al. (1998), Kubenko and Koval’chuk (1998) and Jansen (2002).

In the present study, the nonlinear (large-amplitude) response of perfect and imperfect, simply supported circular

cylindrical shells to harmonic excitation in the spectral neighbourhood of some of the lowest natural frequencies is

investigated. The shell is assumed to be completely filled with an incompressible and inviscid fluid at rest. Donnell’s

nonlinear shallow-shell theory is used, and the solution is obtained by the Galerkin method. The proper orthogonal

decomposition (POD) method, also referred to as the Karhunen-Lo"eve method (Zahorian and Rothenberg, 1981;

Aubry et al. 1988; Sirovich, 1987; Breuer and Sirovich, 1991; Azeez and Vakakis, 2001), is used to extract proper

orthogonal modes from the system time-response, in order to describe the shell behaviour with a low-dimensional

model around the fundamental resonance of the system. The shell time-responses have initially been obtained by a

conventional Galerkin approach with an accurate model involving 16 degrees of freedom, previously developed by

Amabili (2003a). Then, different reduced models have been developed from proper orthogonal modes extracted from

response time series at different excitation frequencies. A model with 3 degrees of freedom has been built by using the

POD method and it describes the shell response over the full frequency range around the fundamental resonance with

very good accuracy. It allows the drastic reduction of the computational effort as compared with the original 16 degree-

of-freedom model necessary with the conventional Galerkin approach.

2. Equation of motion and boundary conditions for the shell

A cylindrical coordinate system (O; x; r; y) is chosen, with the origin O placed at the centre of one end of the shell.

The displacements of points of the middle surface of the shell are denoted by u, v and w, in the axial, circumferential and

radial directions, respectively; w is taken positive inwards, as shown in Fig. 1. Initial imperfections of the circular

cylindrical shell associated with zero initial tension are denoted by an inward radial displacement w0; only radial initial

imperfections are considered. By using Donnell’s nonlinear shallow-shell theory, the equation of motion for finite-

amplitude transverse dynamic deformation of a thin, imperfect, circular cylindrical shell is given by (Dowell and

Ventres, 1968; Chen and Babcock, 1975; Amabili, 2003a)
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where D ¼ Eh3=½12ð1� n2Þ� is the flexural rigidity, E the Young’s modulus, n the Poisson ratio, h the shell thickness, R

the mean shell radius, r the mass density of the shell, c the coefficient of viscous damping, p the radial pressure applied

to the surface of the shell exerted by the contained fluid, and f is an external modal excitation of unspecified physical
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Fig. 1. Shell geometry and coordinate system.
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origin, which has the form:

f ¼ f1;ncos ðnyÞ sin ðpx=LÞcos ðotÞ; ð2Þ

where f1;n is a coefficient having dimensions of pressure. Excitations with frequency close to the natural frequency of the

lowest modes of the shell are considered; low-frequency modes are associated with predominantly radial motion and are

identified by the pair (m, n), where m is the number of axial half-waves and n is the number of circumferential waves.

The viscous damping model introduced in Eq. (1) is unrealistic; it will be replaced by modal damping coefficients,

experimentally identified, in the equations of motion as shown in Section 6. Replacement of modal excitation with a

realistic point excitation will also be discussed in Section 6.

In Eq. (1) the overdot denotes a time derivative and F is the in-plane Airy stress function. Here F is given by the

following compatibility equation (Dowell and Ventres, 1968; Chen and Babcock, 1975; Amabili, 2003a):
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In Eqs. (1) and (3), the biharmonic operator is defined as r4 ¼ ½q2=qx2 þ q2=ðR2q y2Þ�2: Donnell’s nonlinear shallow-

shell equations are accurate only for modes with a large number n of circumferential waves; it is generally assumed that

1=n251 is required in order to have fairly good accuracy (i.e. nX4). Donnell’s nonlinear shallow-shell equations are

obtained by neglecting the in-plane inertia, transverse shear deformation and rotary inertia, giving accurate results only

for very thin shells. In-plane displacements are assumed to be infinitesimal, whereas w is of the same order as the shell

thickness.

The forces per unit length in the axial and circumferential directions, as well as the shear force, are given by (Dowell

and Ventres, 1968)
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The force–displacement relations are (Amabili, 2003a):
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In this study, attention is focused on a finite, simply supported, circumferentially closed circular cylindrical shells of

length L. The following out-of-plane boundary conditions are imposed:

w ¼ w0 ¼ 0; ð8aÞ

Mx ¼ �Dfðq2w=qx2Þ þ n½q2w=ðR2 qy2Þ�g ¼ 0 ð8bÞ

and

q2w0=qx2 ¼ 0 at x ¼ 0;L; ð8cÞ

where Mx is the bending moment per unit length. The in-plane boundary conditions are

Nx ¼ 0 and v ¼ 0 at x ¼ 0;L: ð9a; bÞ

Moreover, u; v and w must be continuous in y:

3. Modal expansion

Previous studies have shown that a linear modal base is the simplest choice for discretizing the system (Amabili et al.,

1999a, 2000a; Pellicano et al., 2002). In particular, in order to reduce the number of degrees of freedom, it is important

to use only the most significant modes. In addition to the asymmetric mode directly driven into vibration by the

excitation (driven mode) it is necessary to consider (i) the orthogonal mode having the same shape and natural

frequency but rotated by p=ð2nÞ (companion mode), (ii) additional asymmetric modes, and (iii) axisymmetric modes. In
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fact, it has clearly been established that, for large-amplitude shell vibrations, the deformation of the shell involves

significant axisymmetric oscillations inwards. According to these considerations, the radial displacement w is expanded

by using the eigenmodes of the empty shell which are unchanged for the completely filled shell (Amabili, 2003a):

wðx; y; tÞ ¼
X3
m¼1

X3
k¼1

½Am;knðtÞcosðknyÞ þ Bm;knðtÞsinðknyÞ�sinðlm xÞ þ
X4
m¼1

Að2m�1Þ;0ðtÞsinðlð2m�1ÞxÞ; ð10aÞ

where n is the number of circumferential waves, m is the number of longitudinal half-waves (only odd values are used

for symmetry), lm ¼ mp=L; and t is the time; Am;nðtÞ; Bm;nðtÞ and Am;0ðtÞ are the generalized coordinates that are

unknown functions of t: The number of degrees of freedom used in the present numerical calculations is 16.

The presence of pairs of modes having the same shape but different angular orientations, the first one described by

cos(ny) (driven mode for the excitation given by Eq. (2)) and the other by sin(ny) (companion mode), in the periodic

response of the shell leads to the appearance of travelling-wave vibration around the shell in the azimuthal direction

when both modes are active and when they have a relative time shift. This phenomenon is related to the axial symmetry

of the system.

When the excitation has a frequency close to the resonance of a particular mode, say (m ¼ 1; n), results show that (i)

the generalized coordinates A1;nðtÞ and B1;nðtÞ have the same frequency as the excitation, (ii) the coordinates A1;2nðtÞ;
B1;2nðtÞ; A3;2nðtÞ; B3;2nðtÞ and all the coordinates associated to axisymmetric modes have twice the frequency of the

excitation, and (iii) the coordinates A3;nðtÞ; B3;nðtÞ; A1;3nðtÞ; B1;3nðtÞ; A3;3nðtÞ and B3;3nðtÞ have three times the frequency of

the excitation.

In order to simplify the notation, Eq. (10a) is re-written in the following compact form:

wðx; y; tÞ ¼
XM
m¼1

XN

n¼0

½Am;nðtÞcosðnyÞ þ Bm;nðtÞsinðnyÞ�sinðlmxÞ; ð10bÞ

where M and N are integers indicating the number of terms used in this expansion.

The initial radial imperfection w0 is expanded in the same form of w, i.e. in a double Fourier series satisfying

boundary conditions (8a,c) at the shell edges,

w0ðx; yÞ ¼
X*M

m¼1

X*N

n¼0

½ *Am;n cosðnyÞ þ *Bm;n sinðnyÞ�sinðlmxÞ; ð11Þ

where *Am;n and *Bm;n are the modal amplitudes of the imperfections; *N and *M indicate the number of terms in the

expansion.

4. Fluid–structure interaction

The contained fluid is assumed to be incompressible, inviscid and irrotational, so that potential theory can be used to

describe fluid motion. Liquid-filled shells vibrating in the low-frequency range satisfy the incompressibility hypothesis

very well. Nonlinear effects in the dynamic pressure and in the boundary conditions at the fluid–structure interface are

neglected. The shell prestress due to the fluid weight is also neglected. The fluid motion is described by the velocity

potential F; which satisfies the Laplace equation (Gon@alves and Batista, 1988; Amabili, 2003a). Cavitation is assumed

not to occur at the fluid–shell interface, and both ends of the fluid volume (corresponding to the shell edges) are

assumed to be open, so that a zero pressure is assumed there. The dynamic pressure p exerted by the contained fluid on

the shell is given by (Amabili, 2003a)

p ¼ rF ð ’FÞr¼R ¼
XM
m¼1

XN

n¼1

rF ½ .Am;nðtÞcosðnyÞ þ .Bm;nðtÞsinðnyÞ�
InðlmRÞ

lmI 0nðlmRÞ
sinðlmxÞ; ð12Þ

where rF is the mass density of the internal fluid, In is the modified Bessel function of order n and I 0n its derivative with

respect to the argument. Eq. (12) shows that the inertial effects due to the fluid are different for each mode of the

expansion. Hence, the fluid is expected to change the nonlinear behaviour of the fluid-filled shell, as a consequence of

the fundamental interaction among asymmetric and the axisymmetric modes. Usually the inertial effect of the fluid is

larger for axisymmetric modes, thus enhancing the nonlinear softening type behaviour of the shell.
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5. Conventional Galerkin solution

Expansion (10) used for the radial displacement w satisfies identically the boundary conditions given by Eqs. (8a,b);

moreover, it satisfies exactly the continuity of the circumferential displacement. The boundary conditions for the in-

plane displacements, Eqs. (9a,b), give very complex expressions when transformed into equations involving w.

Therefore, they are modified into simpler integral expressions that satisfy Eqs. (9a,b) on an average (Dowell and

Ventres, 1968; Amabili et al., 1999a).

When the expansions of w and w0, Eqs. (10) and (11), are substituted on the right-hand side of Eq. (3), a partial

differential equation for the stress function F is obtained, composed of the homogeneous and the particular solution.

By use of the Galerkin method, 16 second-order, ordinary, coupled nonlinear differential equations are obtained for

the variables Am;knðtÞ; Bm;knðtÞ and Am;0ðtÞ; for m ¼ 1;y;M and k ¼ 1;y; 3; by successively weighting the original

Eq. (1) with the functions that describe the shape of the modes retained in Eq. (10). These equations have very long

expressions containing quadratic and cubic nonlinear terms and are studied using both (i) the software AUTO 97

(Doedel et al., 1998) for continuation and bifurcation analysis of nonlinear ordinary differential equations, and (ii)

direct integration of the equations of motion by using the DIVPAG routine of the Fortran library IMSL. The software

AUTO 97 is capable of continuation of the solution, bifurcation analysis and branch switching by using arc-length

continuation and collocation methods. In particular, the shell response under harmonic excitation has been studied by

using an analysis in two steps: (i) first the excitation frequency has been fixed far enough from resonance, and the

magnitude of the excitation used as bifurcation parameter; the solution has been started at zero force, where the

solution is the trivial undisturbed configuration of the shell, and it has been continued up to the desired force

magnitude; (ii) when the desired magnitude of excitation has been reached, the solution has been continued by using the

excitation frequency as bifurcation parameter.

6. Proper orthogonal decomposition (POD) method

As discussed in the previous section, a Galerkin procedure, employing any set of basis functions ji; approximates the

nonlinear partial differential equation (PDE) into a finite set of coupled ordinary differential equations (ODEs), with

the solution being expressed as

wðn; tÞ ¼
XK

i¼1

qiðtÞjiðnÞ; ð13Þ

where t is time, n is the vector of spatial coordinate (x; y) describing the shell middle surface O; qiðtÞ are the generalized
co-ordinates and K is the number of degrees of freedom (dofs), i.e. the number of basis functions assumed. Next, the

proper orthogonal modes (also referred to as spatially coherent modes) obtained by the POD method will be used as a

basis in conjunction with the Galerkin approach.

The POD method optimally extracts the spatial information necessary to characterize the spatio-temporal complexity

and inherent dimension of a system, from a set of temporal snapshots of the response, gathered from either numerical

simulations or experimental data (Zahorian and Rothenberg, 1981; Aubry et al., 1988; Sirovich, 1987; Breuer and

Sirovich, 1991; Azeez and Vakakis, 2001; Sarkar and Pa.ıdoussis, 2003). In the present context, the temporal responses

are obtained via conventional Galerkin simulations. It can be observed here that, for large-amplitude experimentally

measured vibration, responses can be highly noise polluted.The solution can be expressed by using the base of the

proper orthogonal modes cðnÞ;

wðn; tÞ ¼
X*K

i¼1

aiðtÞciðnÞ; ð14Þ

where ai are the proper orthogonal coordinates and *K is the number of degrees of freedom of the POD solution (in

general, significantly lower than K).

The displacement field w is divided into its time-mean value %wðnÞ and the zero-mean response *wðn; tÞ ¼ ðwðn; tÞ �
%wðnÞÞ: In the POD method, the proper orthogonal modes are obtained by minimizing the objective function

*l ¼ ðcðnÞ � *wðn; tÞÞ2
� �

8nAO ð15Þ

with / S denoting the time-averaging operation. If the temporal snapshots of *w are denoted by f *wng; the time-

averaging operation of a series of N snapshots is *wðn; tÞh i ¼ ð1=NÞ
PN

n¼1 *wnðnÞ: By assuming *w to be a random field,

imposing
R
O c2ðnÞ dn ¼ 1; and developing the squared expression in Eq. (15), the proper orthogonal modes are obtained
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by maximizing the quantity
R
O cðnÞ *wðn; tÞ dn

� �
for any n of O: To ensure that this quantity be positive, maximization ofR

OðcðnÞ *wðn; tÞÞ
2 dn

� �
is performed. Therefore, the minimization of the objective function in Eq. (14) can be replaced by

the maximization of the objective function

l ¼

R
OðcðnÞ *wðn; tÞÞ

2 dn
� �

R
O c2ðnÞ dn

ð16Þ

with respect to cðnÞ: In Eq. (16) the denominator is equal to unity. Maximization of the objective function (16) is

obtained by solving the following eigenvalue problem:Z
O
o *wðn; tÞ *wðn0; tÞ > cðn0Þ dn0 ¼ l cðnÞ; ð17Þ

where o *wðn; tÞ *wðn0; tÞ > is the time-averaged spatial autocorrelation function.

A Galerkin projection scheme for determining proper orthogonal modes semi-analytically, and in parallel to

approximate the solution of the PDE, is presented next. The proper orthogonal modes are projected on the eigenmodes

jðnÞ of the empty shell as

cðnÞ ¼
XK

i¼1

aijiðnÞ; ð18Þ

where ai are unknown coefficients. By substituting Eqs. (13) and (18) into Eq. (17), the following expression is obtained:

XK

i¼1

jiðnÞ
XK

j¼1

XK

k¼1

*qiðtÞ *qjðtÞ
� �

ak

Z
O
jjðn

0Þjkðn
0Þ dn0 ¼ l

XK

i¼1

aijiðnÞ; ð19Þ

where *qi ¼ ðqi � %qiÞ is the zero-mean response of the ith generalized coordinate, with %qi being its mean. Eq. (19) is

multiplied by jmðnÞ and integrated over O for any m from 1 to K. By using the orthogonality relationships of the basis

functions jmðnÞ; the following eigenvalue problem is finally obtained

Aa ¼ lBa; ð20Þ

where

Aij ¼ titj *qiðtÞ *qjðtÞ
� �

; Bij ¼ tidij ; ti ¼
Z
O
j2

i ðnÞ dn ð21223Þ

and dij is the Kronecker delta. The norm of the basis functions ti in the present case is pRL=2 for asymmetric modes and

pRL for axisymmetric modes; without effect on the results, they can be assumed to be 0.5 and 1, respectively. In

Eq. (20), A and B are symmetric and positive definite matrices of dimension K � K ; and a is a vector containing the K

unknown coefficients of the proper orthogonal modes. The eigenvectors a corresponding to the largest eigenvalues

(known as dominant proper orthogonal modes) in Eq. (20) can now be inserted in Eq. (18) that gives a basis for the

approximate solution of the PDE using the Galerkin approach; this will be referred to as the POD-Galerkin scheme

hereafter. The optimal number of terms *K to be retained can be estimated by
P *K

i¼1 li=
PK

i¼1 liX0:999 in Eq. (20);

however, for each problem this cut-off value can be different. It can be useful to check the convergence of the solution

by increasing the value *K; over a certain value, results become less accurate, because the additional terms introduced in

the expansion are highly noise-polluted. As mentioned previously, the order of the POD-Galerkin model necessary to

capture the salient dynamical features of the original PDE is significantly lower than that of the conventional Galerkin

model.

In some applications, it may be better to use time responses obtained for different system parameters in order to

produce better proper orthogonal modes. For example, in the case of two such responses, Eq. (20) is still used, but

Eq. (21) is replaced by

A ¼
p1A

ð1Þ

Að1Þ
�� �� þ p2A

ð2Þ

Að2Þ
�� �� ; ð24Þ

where Aj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðAATÞ

q
is the Frobenius norm of A, Tr gives the trace of the matrix,

A
ð1Þ
ij ¼ titj *q

ð1Þ
i ðtÞ *qð1Þj ðtÞ

D E
; ð25Þ

A
ð2Þ
ij ¼ titj *q

ð2Þ
i ðtÞ *qð2Þj ðtÞ

D E
ð26Þ
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and *q
ð1Þ
i ðtÞ and *q

ð2Þ
i ðtÞ are the zero-mean first and second responses, respectively. In Eq. (24) p1 and p2 are two coefficients

used to give a different weight to the first and second response in the calculation of the proper orthogonal modes; the

Frobenius norm is introduced just to normalize the matrices, as the amplitude of the generalized coordinates qiðtÞ can be

very different for the two responses.

7. Galerkin solution with proper orthogonal modes

By using Eqs. (10), (14) and (18), the expansion used for the POD solution is given by

wðn; tÞ ¼
X*K

i¼1

aiðtÞ
XK

j¼1

aj;ijjðnÞ ¼
X*K

i¼1

aiðtÞ
XM
m¼1

XN

n¼0

½am;n;i cosðnyÞ þ bm;n;i sinðnyÞ�sinðlmxÞ; ð27Þ

where on the right-hand side two different symbols, a and b; have been introduced to differentiate the coefficients of the

proper orthogonal modes for cosine and sine terms in y: Expression (27) satisfies identically the boundary conditions

given by Eqs. (8a,b); moreover, it satisfies exactly the continuity of the circumferential displacement (Amabili, 2003a)Z 2p

0

qv=qy dy ¼ vð2pÞ � vð0Þ ¼ 0 ð28Þ

as can be verified after calculation of the stress function F from Eq. (3).

For the same reasons discussed in Section 5, in this case also Eqs. (9a,b) are replaced by simpler integral expressions

that satisfy these boundary conditions on an average (Dowell and Ventres, 1968). Specifically, the following conditions

are imposed:Z 2p

0

NxR dy ¼ 0 at x ¼ 0;L;

Z 2p

0

Z L

0

Nxy dx R dy ¼ 0: ð29; 30Þ

Eq. (29) ensures a zero axial force Nx on an average at x ¼ 0; L; Eq. (30) is satisfied when v ¼ 0 on an average at

x ¼ 0; L; and u is continuous in y on an average. Substitution of Eqs. (9a,b) by Eqs. (29) and (30) simplifies

computations, although it introduces an approximation (boundary conditions (9a,b) are exactly satisfied at n discrete

points, where n is the number of circumferential waves).

When the expansion of w is substituted in the right-hand side of Eq. (3) and zero initial imperfection is assumed

(w0 ¼ 0), a partial differential equation for the stress function F is obtained; the solution may be written as

F ¼ Fh þ Fp; ð31Þ

where Fh is the homogeneous solution and Fp the particular solution. The particular solution is given by

Fp ¼
X*K

i¼1

aiðtÞ
X2M

m¼1

X2N

n¼0

½Fm;n;i;1 sinðmZÞsin ðnyÞ þ Fm;n;i;2 sinðmZÞcosðnyÞ þ Fm;n;i;3 cosðmZÞsinðnyÞ

þ Fm;n;i;4 cosðmZÞcosðnyÞ�; ð32Þ

where Z ¼ p x=L; and the coefficients Fm;n;i;j ; j ¼ 1;y; 4; have a lengthy expressions not given here for brevity. The

technique used to calculate Fm;n;i;j ; j ¼ 1;y; 4; in Eq. (32) is based on the Mathematica computer program (Wolfram,

1999) for symbolic manipulations. If Eq. (27) is substituted into the right-hand side of Eq. (3), after some algebra the

following expressions are obtained:

1

R

q2w

qx2
¼

p2

RL2

q2w

qZ2
¼ �

p2

RL2

X*K

i¼1

aiðtÞ
XM
m¼1

XN

n¼0

½am;n;i cosðnyÞ þ bm;n;i sinðnyÞ�m
2 sin mZ; ð33Þ

1

R

q2w

qxqy

� �2

¼
p2

R2L2

X*K

i¼1

X*K

j¼1

aiðtÞajðtÞ
XM
m1¼1

XM
m2¼1

XN

n1¼0

XN

n2¼0

m1m2n1n2 cosðm1ZÞcosðm2ZÞ½�am1 ;n1 ;isinðn1yÞ þ bm1 ;n1 ;i cosðn1yÞ�

� ½�am2 ;n2 ;j sinðn2yÞ þ bm2 ;n2 ;j cosðn2yÞ�; ð34Þ

q2w

qx2

q2w

R2qy2
¼

p2

R2L2

X*K

i¼1

X*K

j¼1

aiðtÞajðtÞ
XM
m1¼1

XM
m2¼1

XN

n1¼0

XN

n2¼0

m2
1n22 sinðm1ZÞ sinðm2ZÞ½am1 ;n1 ;i cosðn1yÞ þ bm1 ;n1 ;i sinðn1yÞ�

� ½am2 ;n2 ;j cosðn2yÞ þ bm2 ;n2 ;j sinðn2yÞ�: ð35Þ
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By substituting Eqs. (32)–(35) into Eq. (3), the unknown functions Fm,n,i,j can be identified by using the computer

program Mathematica version 4 (Wolfram, 1999).

The homogeneous solution may be assumed to have the form (Amabili et al., 1999a; Amabili, 2003a)

Fh ¼
1

2
%NxR2y2 þ

1

2
x2 %Ny �

1

2pRL

� Z L

0

Z 2p

0

q2Fp

qx2

" #
R dy dx

)
� %Nxyx Ry; ð36Þ

where %Nx; %Ny; and %Nxy are the average in-plane restraint stresses (forces per unit length) generated at the shell ends,

defined as

%N# ¼ ½1=ð2pLÞ�
Z 2p

0

Z L

0

N# dx dy; ð37Þ

where the subscript # must be replaced by x, y and xy; in turn. Eq. (36) is chosen in order to satisfy the boundary

conditions imposed. Moreover, it satisfies Eqs. (4) on the average. Boundary conditions (29, 30) allow us to express %Nx;
%Ny and %Nxy; see Eqs. (5)–(7), in terms of w, w0 and their derivatives. The expressions obtained by inserting the expansion

of w given by Eq. (27) in Eqs. (5)-(7) and (37) are obtained as follows. In accord with the boundary conditions (8) and

(9), it is assumed that

%Nx ¼ constant; ðin particular; %Nx ¼ 0Þ and %Nxy ¼ 0: ð38Þ

Consequently, after simple calculations one obtains

%Ny ¼ n %Nx þ
Eh

2pRL

Z 2p

0

Z L

0

�
w

R
þ 1

2

qw

Rqy

� �2

þ
qw

Rqy
qw0

Rqy

" #
dx R dy: ð39Þ

By inserting Eq. (27) and w0 ¼ 0 into Eq. (39), the following expression is obtained:

%Ny ¼ n %Nx þ
Eh

2pR
�2
X*K

i¼1

aiðtÞ
XM
m¼1

am;0;i

m

(
½1� ð�1Þm�þ

p
4R

X*K

i¼1

X*K

j¼1

aiðtÞ ajðtÞ
XN

n¼1

XM
m¼1

n2ðam;n;iam;n;j þ bm;n;ibm;n;jÞ

)
: ð40Þ

By use of the Galerkin method, *K second order, ordinary, coupled nonlinear differential equations are obtained for

the variables aiðtÞ; for i ¼ 1;y; *K by successively weighting the single original Eq. (1) with the proper orthogonal modes

ci retained in Eq. (27). The Galerkin projections of the equation of motion (1) have been performed analytically by

using the Mathematica computer software (Wolfram, 1999) in order to avoid errors arising from numerical calculations

of surface integrals of trigonometric functions. The Galerkin projection of the modal excitation f on the weighting

functions ci gives

/f ;ciS ¼
Z 2p

0

Z L

0

fci dxR dy ¼ a1;n;i
pRL

2
f1;n cosðotÞ; for i ¼ 1;y; *K: ð41Þ

This kind of external excitation is quite unrealistic. Practically, one or more forces are usually applied to the system.

A more realistic case is the one of a harmonic point excitation, modelling for instance the excitation by an electro-

dynamical exciter (shaker). For this reason, numerical results in the following section are obtained with this realistic

excitation. The point force excitation *f is the resultant of the following pressure distribution:

f ¼ *f dðRy� R*yÞdðx � *xÞcosðotÞ; ð42Þ

where d is the Dirac delta function, *f is the magnitude of the localized force, and *y and *x give the angular and axial

coordinates of the point of application of the force, respectively. If the point excitation is located at *y ¼ 0; *x ¼ L=2; the
Galerkin projection of the excitation f on the weighting functions ci gives

/f ;ciS ¼ *f cosðotÞ
XM
m¼1

XN

n¼0

am;n;i : ð43Þ

In this case, setting *f ¼ f1;n p R L=2; the only difference between modal excitation and point excitation is that the

point-excitation directly drives all conventional Galerkin modes described by a cosine function in the angular direction

y and also the axisymmetric modes, instead of only the (m; n) cosine mode.

The projection of the left-hand side terms in Eq. (1) gives

/Dr4w þ ch ’w þ rh .w;ciS ¼
pRL

2

XM
m¼1

XN

n¼0

ða2m;n;i þ b2m;n;iÞ
1 if n > 0

2 if n ¼ 0

 !
aiðtÞD l2m þ

n2

R2

� �2

þ ’aiðtÞch þ .aiðtÞrh

" #
:

ð44Þ
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The Galerkin projection of the fluid pressure, in the case of a fluid-filled shell, gives

/p;ciS ¼
pRL

2
rF

XM
m¼1

XN

n¼0

ða2m;n;i þ b2m;n;iÞ
1 if n > 0

2 if n ¼ 0

 !
InðlmRÞ

lmI 0nðlmRÞ
.aiðtÞ: ð45Þ

Finally, the equations of motion have the following form:

.aiðtÞ þ 2zioi ’aiðtÞ þ o2
i aiðtÞ þ

X*K

i;j¼1

hijaiðtÞajðtÞ þ
X*K

i;j;k¼1

hijkaiðtÞajðtÞakðtÞ

¼ *fcos ðotÞ
XM
m¼1

XN

n¼0

am;n;i=mi for i ¼ 1;y; *K; ð46Þ

where hij and hijk are the coefficients of quadratic and cubic nonlinear terms, respectively,

mi ¼
pRL

2

XM
m¼1

XN

n¼0

ða2m;n;i þ b2m;n;iÞ
1 if n > 0

2 if n ¼ 0

 !
rh þ rF

InðlmRÞ
lmI 0nðlmRÞ

� �
; ð47Þ

o2
i ¼

p R L

2

XM
m¼1

XN

n¼0

ða2m;n;i þ b2m;n;iÞ
1 if n > 0

2 if n ¼ 0

 !
l2m þ

n2

R2

� �2

þgm;n

" #
=mi ð48Þ

gm;n is a term associated with the projection of �ð1=RÞq2F=qx2; and zi is the damping ratio. The damping ratio is related

to the coefficient of viscous damping c by zi ¼ c=ð2oimiÞ; where oi is the natural radian frequency of the ith proper

ARTICLE IN PRESS

Fig. 2. Maximum amplitude of vibration versus excitation frequency; conventional Galerkin model. (a) Maximum amplitude of

A1;nðtÞ; driven mode; (b) maximum amplitude of B1;nðtÞ; companion mode; (c) maximum amplitude of A1;0ðtÞ; first axisymmetric mode.

1, branch ‘‘1’’; 2, branch ‘‘2’’; BP, pitchfork bifurcation; TR, Neimark-Sacker (torus) bifurcations. ——, stable solutions; – – –,

unstable periodic solutions; a, case ‘‘a’’; b, case ‘‘b’’; c, case ‘‘c’’; d, case ‘‘d’’.
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Fig. 3. Time response at excitation frequency o=o1;n= 0.99, corresponding to point ‘‘a’’ in Fig. 2; conventional Galerkin model. (a) Harmonic force excitation; (b) modal coordinate

A1;nðtÞ associated to the driven mode; (c) modal coordinate A1;2nðtÞ; (d) modal coordinate A1;0ðtÞ associated to the first axisymmetric mode.
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orthogonal mode. In Eq. (46) modal damping and point excitation have been used. Eqs. (46) contain quadratic and

cubic nonlinear terms and are studied with the same numerical techniques as described in Section 4. In particular, in the

numerical simulations with the AUTO code, an artifice has been used to compare the POD and the conventional

Galerkin solutions by adding a new variable zj ; with the following definition:

’zj ¼
X*K

i¼1

ai;j ’aiðtÞ þ ezjð1þ z2j Þ ð49Þ

in this way zj ; except for negligible nonlinear terms of order eD10�10 necessary to avoid singularity of the system, gives

the conversion from proper orthogonal modes to the response of the jth conventional Galerkin mode.

8. Numerical results

A water-filled circular cylindrical shell (without imperfections) is considered, with the following dimensions and

material properties: L ¼ 520mm, R ¼ 149:4mm, h ¼ 0:519mm, E ¼ 1:98� 1011 Pa, r ¼ 7800 kg/m3, rF ¼ 1000 kg/m3

and n ¼ 0:3: Numerical calculations have been performed for the fundamental mode (n ¼ 5; m ¼ 1) of the water-filled

shell, a case previously studied by Amabili (2003a). The response–frequency relationship of the fundamental mode of

the perfect, water-filled shell under harmonic point excitation of magnitude 3N at *x ¼ L=2 and *y ¼ 0 and assuming

modal damping z1;n ¼ 0:0017 is given in Fig. 2, obtained by the conventional Galerkin approach. The natural frequency

o1;n of this mode is 77.64Hz, according to Donnell’s theory of shells. Fig. 2 shows the main branch ‘‘1’’ corresponding

to zero amplitude of the companion mode B1;nðtÞ; this branch has pitchfork bifurcations (BP) at o=o1;n= 0.9714 and at

1.0018 where branch ‘‘2’’ appears. This new branch corresponds to participation of both A1;nðtÞ and B1;nðtÞ; giving a

travelling wave response. Branch ‘‘2’’ loses stability through two Neimark-Sacker (torus) bifurcations (TR), at o=o1;n=

0.9716 and 0.9949. No stable response is indicated in Fig. 2 for 0:9911oo=o1;no0:9949; in fact, only simple-periodic

responses are recognized as stable solutions in Fig. 2. The response of the shell for 0:9911oo=o1;no0:9949 is still

physically stable, but it is an amplitude-modulated (quasiperiodic) response.

In Fig. 2, four points, ‘‘a’’, ‘‘b’’, ‘‘c’’ and ‘‘d’’ are indicated at specific excitation frequencies, o=o1;n= 0.99, 0.99,

0.991, 0.995, respectively. Time traces calculated for these four specific system conditions have been used to produce

proper orthogonal modes, and the most significant generalized coordinates are shown in Figs. 3–5 (time trace at point

‘‘b’’ is not shown for brevity). Cases ‘‘a’’ and ‘‘b’’ correspond to shell vibration without companion mode participation

(in particular, case ‘‘b’’ corresponds to an unstable response); at point ‘‘c’’, the shell has a quasiperiodic response, with

modulations of amplitude, and both driven and companion modes are active; at point ‘‘d’’, the shell response is simple

periodic with companion mode participation.

The POD method has been used to extract proper orthogonal modes from the time series. The coefficients of the

proper orthogonal modes are given in Table 1 (most significant terms only) for the modes extracted for the following

cases: ‘‘a’’, ‘‘c’’, ‘‘d’’, and a combination of ‘‘b’’ and ‘‘d’’ with the same weight (see Eq. (24), p1 ¼ p2 ¼ 0:5) and of ‘‘c’’

and ‘‘�c’’ (case ‘‘�c’’ is obtained by changing in case ‘‘c’’ the sign to the generalized coordinates associated to Sin(ny)
terms in Eq. (10b)). The optimal number of proper orthogonal modes *K to be retained can be estimated by plottingP *K

i¼1 li=
PK

i¼1 li as a function of *K; as has been done in Figs. 6 and 7 for cases ‘‘a’’ and ‘‘c’’, respectively. For case ‘‘a’’

ARTICLE IN PRESS

Fig. 4. Time response at excitation frequency o=o1;n=0.991, corresponding to point ‘‘c’’ in Fig. 2; conventional Galerkin model: (a)

modal coordinate A1;nðtÞ associated to the driven mode; (b) modal coordinate B1;nðtÞ associated to the companion mode.
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Fig. 5. Time response at excitation frequency o=o1;n ¼ 0:995; corresponding to point ‘‘d’’ in Fig. 2; conventional Galerkin model. (a) Harmonic force excitation; (b) modal

coordinate A1;nðtÞ associated to the driven mode; (c) modal coordinate B1;nðtÞ associated to the companion mode; (d) modal coordinate A1;0ðtÞ associated to the first axisymmetric

mode.
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the first mode has almost all the energy of the system, which is completely attained with two modes; an additional mode

is necessary for case ‘‘c’’.

8.1. Frequency domain results

The first results analysed are those with proper orthogonal modes extracted from time series ‘‘a’’. The maximum

amplitude of the shell response for all the frequency range in the spectral neighbourhood of the fundamental frequency

is shown in Fig. 8, calculated by using two proper orthogonal modes; the previous result (Fig. 2) is also plotted for

comparison. Results are converted from proper orthogonal coordinates to the more intuitive modal coordinate by

introducing Eq. (49) in the AUTO computer program. Results for branch ‘‘1’’ are extremely close, even though the

dimension of the system has been reduced from 16 to 2. In this case, the proper orthogonal modes are not able to detect

the bifurcation points and branch ‘‘2’’, because they have been computed by using a time response with zero companion

mode participation. The convergence of the solution is investigated in Fig. 9, where the response computed with one,

two and three proper orthogonal modes is shown. Results show that the additional third mode gives zero contribution

to the shell response and that only two modes are necessary; results with only one mode are completely wrong. The first

of the two necessary modes is associated with the driven mode (m ¼ 1; n ¼ 5), while the second is associated mainly

with axisymmetric oscillation involving contribution of modes with 2n circumferential waves (see Table 1); the

axisymmetric term is fundamental for correctly predicting the nonlinearity of the shell, as shown in previous studies

(Amabili et al., 1999b, 2000a).

The maximum amplitude of the shell response is shown in Fig. 10 for case ‘‘d’’, calculated by using three proper

orthogonal modes. The computed response tends to follow both branches ‘‘1’’ and ‘‘2’’ of the original results but

without any bifurcation point. However, the reduced order model is not particularly good over the whole of the

frequency range displayed. In contrast, an excellent result is obtained with three proper orthogonal modes calculated

from time response ‘‘c’’ in Fig. 11. In this case, Neimark-Sacker (torus) bifurcations are detected at o=o1;n ¼ 0:9712;
0.9942, 0.9731 and 0.9943, but pitchfork bifurcations are not. This result seems to indicate that response ‘‘c’’ with

amplitude modulations has more information on the system dynamics than the simple periodic response ‘‘d’’ with

companion mode participation. Results for case ‘‘c’’ in the original proper orthogonal coordinates are shown in Fig. 12;

stability of the simple periodic response is given here. Figs. 11 and 12 show a curious loop in the solution, which is

necessary for following all the branches of the solution, as a consequence of no pitchfork bifurcations having been

obtained with this POD model.

In order to verify whether results for case ‘‘d’’ could be improved, proper orthogonal modes have been extracted by

combining time series of cases ‘‘b’’ and ‘‘d’’. The maximum amplitude of the shell response is shown in Figs. 13 and 14

for different weights of the time traces and three proper orthogonal modes. In particular, Fig. 13 has been obtained with

weights 0.3 for case ‘‘b’’ and 0.7 for case ‘‘d’’; Fig. 14 has been obtained with weights 0.5 for both cases. Both results are

better than that those obtained with time trace ‘‘d’’ alone, and the one with equal weights of the two traces is the best,

even though it is not as good as the result from case ‘‘c’’. However, in this case the loop found in Fig. 11 is avoided and

ARTICLE IN PRESS

Table 1

Coefficients of the proper orthogonal modes (main terms only)

Time response i a1;5;i b1;5;i a1;10;i b1;10;i a1;0;i a3;0;i

‘‘a’’ 1 �1 0 �0.00163 0 �0.000391 �0.00006

2 0.001658 0 �0.5819 0 �0.7914 0.1490

‘‘c’’ 1 0.9053 �0.4248 0.000140 0.000014 0.0000206 6.91� 10�6

2 �0.4248 �0.9053 �0.000216 �5.47� 10�6 �0.000063 �6.41� 10�6

3 �0.000123 �0.000119 0.1813 �0.1918 0.9456 �0.1819

‘‘d’’ 1 0.4271 �0.9042 �0.00014 7.9� 10�6 �0.000047 �4.59� 10�6

2 �0.9042 �0.4271 �0.0016 �0.000024 �0.00038 �0.000061

3 0.00035 0.00019 �0.4784 0.5830 0.6311 �0.1199

0.5 ‘‘b’’ 1 0.9155 �0.40225 �0.000224 �1.53� 10�6 �0.000088 7.44� 10�7

+ 0.5 ‘‘d’’ 2 �0.40225 �0.9155 �0.000224 �0.000013 �0.000040 �0.000016

3 �0.0001695 0.0002625 �0.44345 0.1674 �0.8611 0.1636

0.5 ‘‘c’’ 1 1 0 0.000213 0 0.0000434 8.85� 10�6

+ 0.5 ‘‘�c’’ 2 0 1 0 �0.000291 0 0

3 0.000123 0 �0.1847 0 �0.9641 0.1855
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the results are more easily understandable. Results given in Fig. 14 are shown in Fig. 15 in the original proper

orthogonal coordinates, also differentiating stable and unstable portions of the solution (note that the quasiperiodic

solution is denoted as an ‘‘unstable solution’’, to differentiate it from the stable harmonic response).

Results for case ‘‘c’’, though quantitatively very good, are qualitatively unsatisfactory, because no pitchfork

bifurcations are obtained. However, this is due to the fact that the symmetry in the solution of the system has

inadvertently been broken by considering the travelling wave to occur in one direction only. In fact, associated

with this response there is always an identical one travelling in the opposite angular direction. By taking into account

both responses (the second one must be obtained from response ‘‘c’’ only changing the sign of the generalized

coordinates associated with Sin(ny) terms in Eq. (10b)1) and combining them with identical weights in Eq. (24),
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Fig. 6. Significance of POD eigenvalues versus the number of proper orthogonal modes; case ‘‘a’’.

Fig. 7. Significance of POD eigenvalues versus the number of proper orthogonal modes; case ‘‘c’’.

1 If the second response is obtained by time integration, as done for the first one, numerical differences between the two responses

travelling in opposite directions will appear, and the system will not fully recover its symmetry.
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the symmetry of the system is recovered; then both pitchfork and Neimark-Sacker (torus) bifurcations are

obtained. The results of this reduced order model (with three proper orthogonal modes) are given in Fig. 16, where

comparison to the original results is seen to be very satisfactory. Results for case ‘‘c’’ combined with ‘‘�c’’ in the

original proper orthogonal coordinates are shown in Fig. 17; in this case, stabile and unstable periodic solutions are

clearly identified.
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Fig. 8. Maximum amplitude of vibration versus excitation frequency; POD model versus conventional Galerkin model, case ‘‘a’’.

Maximum amplitude of A1;nðtÞ; driven mode. , POD model (2 modes); ——, stable conventional Galerkin solutions; – – –,

unstable conventional Galerkin solutions.

Fig. 9. Maximum amplitude of A1;nðtÞ versus excitation frequency; POD model, case ‘‘a’’. , POD model with 3 modes; ——, POD

model with 2 modes (coincident with model with 3 modes); – – –, POD model with 1 mode.
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8.2. Time domain results

The reduced order model (3 degrees of freedom) built by using time traces ‘‘c’’ gives quite satisfactory results. For this

reason, this model has been used to produce the time domain results; the DIVPAG routine of the Fortran library IMSL

has been used. The first case studied is with excitation frequency o=o1;n ¼ 0:991: All the three proper orthogonal

ARTICLE IN PRESS

Fig. 10. Maximum amplitude of vibration versus excitation frequency; POD model versus conventional Galerkin model, case ‘‘d’’. (a)

Maximum amplitude of A1;nðtÞ; driven mode; (b) maximum amplitude of B1;nðtÞ; companion mode. , POD model (3 modes); ——,

stable conventional Galerkin solutions; – – –, unstable conventional Galerkin solutions.

Fig. 11. Maximum amplitude of vibration versus excitation frequency; POD model versus conventional Galerkin model, case ‘‘c’’. (a)

Maximum amplitude of A1;nðtÞ; driven mode; (b) maximum amplitude of B1;nðtÞ; companion mode. , POD model (3 modes); ——,

stable conventional Galerkin solutions; – – –, unstable conventional Galerkin solutions.
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Fig. 12. Maximum amplitude of vibration versus excitation frequency; POD model, case ‘‘c’’. (a) Proper orthogonal coordinate a1ðtÞ; (b) proper orthogonal coordinate a2ðtÞ; (c)
proper orthogonal coordinate a3ðtÞ: , stable solutions; – – –, unstable periodic solutions.
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coordinates are given in Fig. 18; the most significant modal coordinates are shown in Fig. 19, so that they can

immediately, and satisfactorily, be compared to the original time response given in Fig. 4.

The second case investigated is at excitation frequency o=o1;n ¼ 0:995: The proper orthogonal coordinates are given
in Fig. 20, and the most significant modal coordinates in Fig. 21. The agreement between Fig. 21 and the original time

response given in Fig. 5 is particularly good.

9. Conclusions

The POD method is a valuable instrument for reducing the dimension of complex nonlinear dynamical systems.

However, a reliable model is necessary first, to produce time series of responses in order to obtain the proper orthogonal
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Fig. 13. Maximum amplitude of vibration versus excitation frequency; POD model versus conventional Galerkin model, case ‘‘b’’

(weight 0.3) combined with ‘‘d’’ (weight 0.7). (a) Maximum amplitude of A1;nðtÞ; driven mode; (b) maximum amplitude of B1;nðtÞ;
companion mode. , POD model (3 modes); ——, stable conventional Galerkin solutions; – – –, unstable conventional Galerkin

solutions.

Fig. 14. Maximum amplitude of vibration versus excitation frequency; POD model versus conventional Galerkin model, case ‘‘b’’

(weight 0.5) combined with ‘‘d’’ (weight 0.5). (a) Maximum amplitude of A1;nðtÞ; driven mode; (b) maximum amplitude of B1;nðtÞ;
companion mode. , POD model (3 modes); ——, stable conventional Galerkin solutions; – – –, unstable conventional Galerkin

solutions.
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modes. Experimental time responses are a possible alternative, but usually they are highly noise-polluted for large-

amplitude vibrations. Also, great care must be taken in the choice of appropriate system parameters for which proper

orthogonal modes are extracted, in order to capture the essential dynamics of the system for a given parameter range of

interest. These aspects, no doubt, limit the practical usefulness of the method.

In the present study the challenging problem of nonlinear (large amplitude) vibrations of a water-filled shell is

considered to test the potential of the POD method. In fact, this problem displays behaviour involving simple periodic

standing waves, travelling waves and quasiperiodic response in a narrow frequency range around resonance. The system

displays a softening-type nonlinearity, with pitchfork and Neimark-Sacker (torus) bifurcations. Qualitatively the shell

dynamics is not changed if different dimensions (if the shell is not thick or very long), material properties, or modes

excited are considered, and if the fluid contained is eliminated. For this reason, in the present study, different cases have

not been considered.

An accurate reduced-order model has been built with only 3 degrees of freedom by using the POD method, versus the

16 degrees of freedom of the original model; (it can be observed that some reduction of the conventional Galerkin

model was also possible by eliminating the less significant modes; e.g. see Amabili et al. (1999b, 2000a) and Pellicano

et al. (2002). The reduced order model is capable of predicting with good accuracy the vibration amplitude, limit points

and both pitchfork and Neimark-Sacker (torus) bifurcations. However, in order to reproduce the pitchfork bifurcations

ARTICLE IN PRESS

Fig. 15. Maximum amplitude of vibration versus excitation frequency; POD model, case ‘‘b’’ (weight 0.5) combined with ‘‘d’’ (weight

0.5). (a) Proper orthogonal coordinate a1ðtÞ; (b) proper orthogonal coordinate a2(t); (c) proper orthogonal coordinate a3(t). ,

stable solutions; – – –, unstable periodic solutions.
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Fig. 16. Maximum amplitude of vibration versus excitation frequency; POD model versus conventional Galerkin model, case ‘‘c’’

(weight 0.5) combined with ‘‘�c’’ (weight 0.5). (a) Maximum amplitude of A1;nðtÞ; driven mode; (b) maximum amplitude of B1;nðtÞ;
companion mode. , POD model (3 modes); ——, stable conventional Galerkin solutions; – – –, unstable conventional Galerkin

solutions.

Fig. 17. Maximum amplitude of vibration versus excitation frequency; POD model, case ‘‘c’’ (weight 0.5) combined with ‘‘�c’’ (weight

0.5). (a) Proper orthogonal coordinate a1ðtÞ; (b) proper orthogonal coordinate a2ðtÞ; (c) proper orthogonal coordinate a3(t). ,

stable solutions; – – –, unstable periodic solutions.
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Fig. 18. Time response at excitation frequency o=o1;n ¼ 0:991; POD model, case ‘‘c’’. (a) Proper orthogonal coordinate a1ðtÞ; (b)
proper orthogonal coordinate a2(t); (c) proper orthogonal coordinate a3ðtÞ:

Fig. 19. Time response at excitation frequency o=o1;n ¼ 0:991; POD model, case ‘‘c’’. (a) Modal coordinate A1;nðtÞ associated to the

driven mode; (b) modal coordinate B1;nðtÞ associated to the companion mode; (c) modal coordinate A1;0ðtÞ associated to the first

axisymmetric mode.
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Fig. 20. Time response at excitation frequency o=o1;n ¼ 0:995; POD model, case ‘‘c’’. (a) Harmonic force excitation; (b) proper orthogonal coordinate a1ðtÞ; (c) proper orthogonal
coordinate a2(t); (d) proper orthogonal coordinate a3ðtÞ:
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Fig. 21. Time response at excitation frequency o=o1;n ¼ 0:995; POD model, case ‘‘c’’. (a) Harmonic force excitation; (b) modal coordinate A1;nðtÞ associated to the driven mode; (c)

modal coordinate B1;nðtÞ associated to the companion mode; (d) modal coordinate A1;0ðtÞ associated to the first axisymmetric mode.
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of the original model, it is necessary to utilize both the mirro-image responses, involving travelling waves in opposite

directions. The best model has been constructed by using the time response with amplitude modulations obtained for an

excitation frequency very close to the fundamental frequency of the water-filled shell.
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